
A Differential Semantics for Jointree

Algorithms

James D. Park

Computer Science Department
University of California
Los Angeles, CA 90095

Adnan Darwiche

Computer Science Department
University of California
Los Angeles, CA 90095

Abstract

A new approach to inference in belief networks has been recently proposed, which is
based on an algebraic representation of belief networks using multi–linear functions.
According to this approach, belief network inference reduces to a simple process of
evaluating and differentiating multi–linear functions. We show here that mainstream
inference algorithms based on jointrees are a special case of the approach based on
multi–linear functions, in a very precise sense. We use this result to prove new
properties of jointree algorithms. We also discuss some practical and theoretical
implications of this new finding.

1 Introduction

It was recently shown that the probability distribution of a belief network
can be represented using a multi–linear function, and that most probabilistic
queries of interest can be retrieved directly from the partial derivatives of this
function [3]. Although the multi–linear function has an exponential number

Email addresses: jd@cs.ucla.edu (James D. Park), darwiche@cs.ucla.edu
(Adnan Darwiche).

Preprint submitted to Elsevier Science 13 November 2003

of terms, it can be represented by a small arithmetic circuit in certain situa-
tions. For example, it was shown recently that real-world belief networks with
treewidth up to 60 can be compiled into arithmetic circuits with few thou-
sand nodes [4]. 1 Once a belief network is compiled into an arithmetic circuit,
probabilistic inference is then performed by evaluating and differentiating the
circuit, using a very simple procedure which resembles back–propagation in
neural networks.

We show in this paper that mainstream inference algorithms based on jointrees
[14,9] are a special-case of the arithmetic–circuit approach proposed in [3].
Specifically, we show that each jointree is an implicit representation of an
arithmetic circuit; that the inward–pass in jointree propagation evaluates this
circuit; that the outward–pass differentiates the circuit; and that the difference
between Shenoy–Shafer and Hugin propagation is a difference between two
numeric schemes for circuit differentiation. Using these results, we prove new
useful properties of jointree propagation algorithms. We also suggest a new
interpretation of the process of factoring graphical models into jointrees, as a
process of factoring exponentially–sized multi–linear functions into arithmetic
circuits of smaller size.

This paper is structured as follows. Sections 2 and 3 are dedicated to a review
of inference approaches based on arithmetic circuits and jointrees. Section 4
shows that the jointree approach is a special case of the arithmetic–circuit
approach, and discusses some practical implications of this finding. Section 5
discusses circuit differentiation in more details, explaining the difference be-
tween Shenoy–Shafer and Hugin propagation in those terms. Section 6 closes
with a new perspective on factoring of graphical models based on these find-
ings. Proofs of all theorems appear in Appendix A.

2 Belief networks as multi–linear functions

A belief network is a factored representation of a probability distribution. It
consists of two parts: a directed acyclic graph (DAG) and a set of conditional
probability tables (CPTs). For each node X and its parents U in the DAG,
we must have a CPT that specifies the probability distribution of X under
each instantiation u of the parents. 2 Figure 1 depicts a simple belief network
which has three CPTs.

1 Such networks have local structure, and are outside the scope of mainstream algo-
rithms for inference in belief networks whose complexity is exponential in treewidth.
2 Variables are denoted by upper–case letters (A) and their values by lower–case
letters (a). Sets of variables are denoted by bold–face upper–case letters (A) and
their instantiations are denoted by bold–face lower–case letters (a). For a variable
A with values true and false, we use a to denote A= true and ā to denote A= false.

2

A

B C

A B

true true θb|a = .2

true false θb̄|a = .8

false true θb|ā = .7

false false θb̄|ā = .3

A

true θa = .6

false θā = .4

A C

true true θc|a = .8

true false θc̄|a = .2

false true θc|ā = .15

false false θc̄|ā = .85

Fig. 1. A belief network with its CPTs.

A belief network is a representational factorization of a probability distri-
bution, not a computational one. That is, although the network compactly
represents the distribution, it needs to be processed further if one is to obtain
answers to arbitrary probabilistic queries. Mainstream algorithms for infer-
ence in belief networks operate on the network to generate a computational
factorization, allowing one to answer queries in time which is linear in the
factorization size. A most influential computational factorization of belief net-
works is the jointree [14,9,7]. Standard jointree factorizations are structure–
based: their size depend only on the network topology and is invariant to local
CPT structure. This observation has triggered much research for alternative,
finer–grained factorizations, since real-world networks can exhibit significant
local structure that leads to smaller factorizations if exploited.

We discuss next one of the latest proposals in this direction, which calls for
using arithmetic circuits as a computational factorization of belief networks
[3]. This proposal is based on viewing each belief network as a multi–linear
function, which can be represented compactly using an arithmetic circuit. The
multi–linear function itself contains two types of variables. Evidence indica-
tors: for each variable X in the network , we have a variable λx for each value
x of X. Network parameters: for each variable X and its parents U in the
network, we have a variable θx|u for each value x of X and instantiation u of
U.

The multi–linear function has a term for each instantiation of the network
variables, which is constructed by multiplying all evidence indicators and net-
work parameters that are consistent with that instantiation. For example, the

Finally, for a variable X and its parents U, we use θx|u to denote the CPT entry
corresponding to Pr(x | u).

3

multi–linear function of the network in Figure 1 has eight terms corresponding
to the eight instantiations of variables A,B,C:

f = λaλbλcθaθb|aθc|a + λaλbλc̄θaθb|aθc̄|a + . . .+ λāλb̄λc̄θāθb̄|āθc̄|ā.

We will often refer to such a multi–linear function as the network polynomial.

Given the network polynomial f , we can answer any query with respect to the
belief network. Specifically, let e be an instantiation of some network variables,
and suppose we want to compute the probability of e. We can do this by simply
evaluating the polynomial f while setting each evidence indicator λx to 1 if
x is consistent with e, and to 0 otherwise. For the network in Figure 1, we
can compute the probability of evidence e = bc̄ by evaluating its polynomial
above under λa = 1,λā = 1,λb = 1, λb̄ = 0 and λc = 0, λc̄ = 1. This leads to
θaθb|aθc̄|a + θāθb|āθc̄|ā, which equals the probability of b, c̄ in this case. We use
f(e) to denote the result of evaluating the polynomial f under evidence e as
given above.

This algebraic representation of belief networks is attractive as it allows us
to obtain answers to a large number of probabilistic queries directly from the
derivatives of the network polynomial [3]. For example, the posterior marginal

Pr(x|e) for a variable X 6∈ E equals 1
f(e)

∂f(e)
∂λx

, where ∂f(e)
∂λx

is the partial deriva-
tive of f wrt λx evaluated at e. Second, the probability of evidence e after
having retracted the value of some variable X from e, Pr(e − X), equals∑
x
∂f(e)
∂λx

. Third, the posterior marginal Pr(x,u|e) for a variable X and its

parents U equals
θx|u
f(e)

∂f(e)
∂θx|u

.

The approach presented above is quite transparent semantically as it provides
simple closed forms to subtle queries. But it is computationally infeasible
since the multi–linear function has an exponential number of terms. One can
represent the function compactly in certain cases, however, using an arithmetic
circuit; see Figure 2. The (first) partial derivatives of an arithmetic circuit can
all be computed simultaneously in time linear in the circuit size [3,12]. The
procedure resembles the back–propagation algorithm for neural networks as it
evaluates the circuit in a single upward-pass, and then differentiates it through
a single downward-pass; see Section 5.

The main computational question is then that of generating the smallest arith-
metic circuit that computes the network polynomial. A structure–based ap-
proach for this has been given in [3], which is guaranteed to generate a circuit
whose size is bounded by O(n exp(w)), where n is the number of nodes in
the network and w is its treewidth. A more recent approach, however, which
exploits local structure has been presented in [4] and was shown experimen-
tally to generate small arithmetic circuits (a few thousand nodes) for networks

4

* *

+

+ +

*** *

λa λb λb λaθa θb|a θb|a θb|a θb|a θa

Fig. 2. An arithmetic circuit which computes the function λaλbθaθb|a+ λaλb̄θaθb̄|a+
λāλbθāθb|ā+ λāλb̄θāθb̄|ā. The circuit is a DAG, where leaf nodes represent function
variables and internal nodes represent arithmetic operations.

whose treewidth is up to 60. As we show in the rest of this paper, the process
of factoring a belief network into a jointree is yet another method for gen-
erating an arithmetic circuit for the network. Specifically, we show that the
jointree structure is an implicit representation of such a circuit; that jointree
propagation is nothing but an evaluation and differentiation of the embedded
circuit; and that the difference between Shenoy–Shafer and Hugin propagation
is a difference in the numeric scheme used for circuit differentiation.

3 Jointree Algorithms

We review jointree algorithms in this section, which are very influential al-
gorithms for probabilistic inference in graphical models. Let B be a belief
network. A jointree for B is a pair (T,L), where T is a tree and L is a func-
tion that assigns labels to nodes in T. A jointree must satisfy three properties:
(1) each label L(i) is a set of variables in the belief network; (2) each network
variable X and its parents U (a family) must appear together in some label
L(i); (3) if a variable appears in the labels of i and j, it must also appear in
the label of each node k on the path connecting them.

The label of edge ij in T is defined as L(i) ∩ L(j). We will refer to the nodes
of a jointree (and sometimes their labels) as clusters. We will also refer to the
edges of a jointree (and sometimes their labels) as separators. Figure 3 depicts
a belief network and one of its jointrees.

Jointree algorithms start by constructing a jointree for a given belief network

5

A

CB

D E

BCD

λBλDθD|BC

CE

λCλEθE|C

ABC

λAθAθB|AθC|A

Fig. 3. A belief network and a corresponding jointree.

[14,9,7]. They also associate tables (also called potentials) with clusters and
separators. 3 The conditional probability table (CPT or CP Table) of each
variable X with parents U, denoted θX|U, is assigned to a cluster that contains
X and U. In addition, an evidence table over variable X, denoted λX , is
assigned to a cluster that contains X. Figure 3 depicts the assignments of
evidence and CP tables to clusters. Evidence e is entered into a jointree by
initializing evidence tables as follows: we set λX(x) to 1 if x is consistent with
evidence e, and we set λX(x) to 0 otherwise.

Given some evidence e, a jointree algorithm propagates messages between
clusters. After passing two messages per edge in the jointree, one can compute
the marginals Pr(C, e) for every cluster C. There are two main methods for
propagating messages in a jointree, known as the Shenoy–Shafer architecture
[14] and the Hugin architecture [9].

Shenoy–Shafer propagation proceeds as follows [14]. First, evidence e is en-
tered into the jointree. A cluster is then selected as the root and message
propagation proceeds in two phases, inward and outward. In the inward phase,
messages are passed toward the root. In the outward phase, messages are
passed away from the root. Cluster i sends a message to cluster j only when it
has received messages from all its other neighbors k. A message from cluster
i to cluster j is a table Mij defined as follows:

Mij =
∑
C\S

φi
∏
k 6=j

Mki,

3 A table is an array which is indexed by variable instantiations. Specifically, a
table φ over variables X is indexed by the instantiations x of X. Its entries φ(x) are
in [0, 1]. We assume familiarity with table operations, such as multiplication and
marginalization [7].

6

λBθB|A

A AB

Initialization:

a
a

λAθA
a
a

A AB

After inward pass:

.7a

.2a

λAθA
a
a

A AB

After outward
pass: .7a

.2a

λAθA
.4a
.6a

λBθB|A

λBθB|A

Fig. 4. Shenoy–Shafer propagation illustrated on a simple jointree under evidence
b. The jointree is for network A → B, where θa = .6, θb|a = .2 and θb|ā = .7.

where C are the variables of cluster i, S are the variables of separator ij, and
φi is the multiplication of all evidence and CP tables assigned to cluster i.
Once message propagation is finished, we have Pr(C, e) = φi

∏
kMki, where

C are the variables of cluster i. Figure 4 illustrates Shenoy–Shafer propagation
on a simple example.

The space requirements for the Shenoy–Shafer architecture are those needed
to store the messages. For each separator ij with variables S, we need two
tables over variables S. One table stores the message from cluster i to cluster
j, and the other stores the message from j to i.

Hugin propagation proceeds similarly to Shenoy–Shafer by entering evidence;
selecting a cluster as root; and propagating messages in two phases, inward
and outward [9]. The Hugin method, however, differs in some major ways. It
maintains a table Φij with each separator, whose entries are initialized to 1s. It
also maintains a table Φi with each cluster i, initialized to the multiplication of
all CPTs and evidence tables assigned to cluster i; see Figure 5. Cluster i passes
a message to neighboring cluster j only when i has received messages from all
its other neighbors k. When cluster i is ready to send a message to cluster j, it
does the following. First, it saves the table of separator Φij into Φold

ij . Second,
it computes a new separator table Φij =

∑
C\S Φi, where C are the variables of

cluster i and S are the variables of separator ij. Third, it computes a message
to cluster j: Mij = Φij

Φold
ij

. Finally, it multiplies the computed message into the

table of cluster j: Φj = ΦjMij. After the inward and outward–passes of Hugin

7

A AB

0ab
.7ab
0ab
.2abInitialization:

1a
1a

λAθA λBθB|A

.4a

.6a

A AB

0ab
.7ab
0ab
.2abAfter inward pass:

.7a

.2a

λAθA λBθB|A

.28a

.12a

A AB

0ab
.28ab
0ab

.12abAfter outward
pass: .28a

.12a

λAθA λBθB|A

.28a

.12a

Fig. 5. Hugin propagation illustrated on a simple jointree under evidence b. The
jointree is for network A → B, where θa = .6, θb|a = .2 and θb|ā = .7.

propagation are completed, we have: Pr(C, e) = Φi, where C are the variables
of cluster i. Figure 5 illustrates Hugin propagation on a simple example.

Therefore, the space requirements for the Hugin architecture are those needed
to store cluster and separator tables: one table for each cluster and one table for
each separator. Note that the Hugin architecture does not save the messages
exchanged between clusters.

4 Jointrees as arithmetic circuits

We now show that every jointree (together with a root cluster and a particular
assignment of evidence and CP tables to clusters) corresponds precisely to an
arithmetic circuit that computes the network polynomial. We also show that
the inward–pass of the Shenoy–Shafer architecture evaluates this circuit, while
the outward–pass differentiates it. We show a similar result for the Hugin ar-
chitecture. Interestingly enough, the difference between the two architectures
can be viewed as a difference in the numeric scheme used to implement circuit
differentiation, which is explained in Section 5.

We now define the arithmetic circuit embedded in a jointree. Given a root
cluster, one can direct the jointree by having arrows point away from the root,
which also defines a parent/child relationship between clusters and separators.

8

Definition 1 Given a root cluster, a particular assignment of evidence and
CP tables to clusters, the arithmetic circuit embedded in a jointree is defined
as follows:

Nodes: The circuit includes: an output addition node f ; an addition node s for
each instantiation of a separator S; a multiplication node c for each instanti-
ation of a cluster C; an input node λx for each instantiation x of variable X;
an input node θx|u for each instantiation xu of family XU.

Edges: The children of the output node f are the multiplication nodes generated
by the root cluster; the children of an addition node s are all compatible nodes
generated by the child cluster; the children of a multiplication node c are all
compatible nodes generated by child separators; in addition to all compatible
inputs nodes corresponding to cluster C.

Hence, separators contribute addition nodes and clusters contribute multipli-
cation nodes. Moreover, the structure of the jointree dictates how these nodes
are connected into a circuit. The arithmetic circuit in Figure 2 is embedded
in the jointree A − AB, with cluster A as the root, and with tables λA, θA
assigned to cluster A and tables λB and θB|A assigned to cluster B. There are
three addition nodes in this circuit, two of which correspond to the instan-
tiations of separator A. There are also six multiplication nodes, the top two
correspond to cluster A and the bottom four correspond to cluster AB. Note
that the arithmetic circuit embedded in a jointree has a very specific structure:
it alternates between addition and multiplication nodes; its output is always
an addition node; and every multiplication node has a unique parent.

Obviously, the inputs of the arithmetic circuit embedded in a jointree are
in one–to–one correspondence with variables in the network polynomial. The
following theorem says that the circuit and network polynomial represent the
same function.

Theorem 1 The arithmetic circuit embedded in a jointree computes the net-
work polynomial.

Therefore, by constructing a jointree one is generating a compact represen-
tation of the network polynomial in terms of an arithmetic circuit, where
Definition 1 describes precisely how to obtain such a circuit from the con-
structed jointree. Note that the number of addition and multiplication nodes
in the circuit equals the number of cluster and separator entries plus 1.

9

4.1 Differential semantics

We are now ready to state our basic results on the differential semantics of
jointree propagation, but we need some notational conventions first. In the
following three theorems: f denotes the circuit embedded in a jointree or its
(unique) output node; s denotes a separator instantiation or the addition node
generated by that instantiation; and c denotes a cluster instantiation or the
multiplication node generated by that instantiation. Moreover, the value that
a circuit node v takes under evidence e is denoted v(e). Recall that a circuit
(or network polynomial) is evaluated under evidence e by setting each input
λx to 1 if x is consistent with e; and to 0 otherwise. Finally, recall that ∂f/∂v
represents the derivative of the circuit output with respect to node v.

Our first result relates to Shenoy–Shafer propagation.

Theorem 2 The messages produced using Shenoy–Shafer propagation on an
arbitrary jointree under evidence e have the following semantics.

For each inward message Mij, we have Mij(s) = s(e).

For each outward message Mji, we have Mji(s) = ∂f(e)
∂s

.

That is, if we interpret separator instantiations as addition nodes in a circuit
as given by Definition 1, we get that a message directed towards the jointree
root contains the values of these addition nodes, while a message directed
outward from the root contains the partial derivatives of the circuit output
with respect to these addition nodes.

Shenoy–Shafer propagation does not compute derivatives with respect to input
nodes λx and θx|u, but these can be obtained using local computations as
follows.

Theorem 3 Suppose that evidence table λX is assigned to cluster i which has
variables C. Then:

∂f(e)

∂λx
=

 ∑
C\X

∏
j

Mji

∏
ψ 6=λX

ψ

 (x), (1)

where ψ ranges over all evidence and CP tables assigned to cluster i. Suppose
now that CPT θX|U is assigned to cluster i which has variables C. Then:

∂f(e)

∂θx|u
=

 ∑
C\XU

∏
j

Mji

∏
ψ 6=θX|U

ψ

 (xu), (2)

10

where ψ ranges over all evidence and CP tables assigned to cluster i.

Therefore, even though Shenoy–Shafer propagation does not fully differentiate
the embedded arithmetic circuit, the differentiation process can be completed
through local computations after propagation has finished. The extra deriva-
tives computed in this process are quite valuable as we discuss later.

We now present a similar, but more extensive results on Hugin propagation.

Theorem 4 Cluster tables, separator tables and messages produced using Hugin
propagation under evidence e have the following semantics:

For table Φi of cluster i with variables C: Φi(c) = c(e)
∂f(e)

∂c
.

For table Φij of separator ij with variables S: Φij(s) = s(e)
∂f(e)

∂s
.

For each inward message Mij, we have Mij(s) = s(e).

For each outward message Mji, we have Mji(s) = ∂f(e)
∂s

if s(e) 6= 0.

Again, Hugin propagation does not compute derivatives with respect to input
nodes λx and θx|u. Even for addition and multiplication nodes, it only retains
derivatives multiplied by values. 4 Hence, if we want to recover the derivative
with respect to, say, multiplication node c, we must know the value of this
node and it must be different than zero. In such a case, we have ∂f(e)/∂c =
Φi(c)/c(e), where Φi is the table associated with the cluster i that generates
node c. One can also compute the quantity v ∂f/∂v for input nodes using
equations similar to those in Theorem 3. But such quantities will be useful for
obtaining derivatives only if the values of such input nodes are not zero. Hence,
Shenoy–Shafer propagation is more informative than Hugin propagation as far
as computing derivatives is concerned.

4.2 Applications of derivatives

Partial derivatives with respect to evidence indicators λx and network pa-
rameters θx|u have many applications, and our ability to compute them using
standard jointree propagation has been unveiled by Theorem 3. We discuss
these applications next.

4 Hugin propagation computes derivatives with respect to addition nodes at some
point (outward messages) but does not save them.

11

Fast retraction & evidence flipping

Suppose jointree propagation has been performed using evidence e, which
gives us access directly to the probability of e. Suppose now we are interested
in the probability of a different evidence e′, which results from changing the
value of some variable X in e to a new value x. The probability of e′ in this
case is equal to ∂f(e)

∂λx
[3], which can be obtained as given by Equation 1. The

ability to perform this computation efficiently is crucial for algorithms that
try to approximate maximum a posteriori hypothesis (MAP) using local search
[10,11]. Another application of this derivative is in computing the probability
of evidence e′, which results from retracting the value of some variable X
from e: Pr(e′) =

∑
x
∂f(e)
∂λx

. This computation is key to analyzing evidence
conflict, as it allows us to determine the extent to which one piece of evidence
is contradicted by the remaining pieces.

Sensitivity analysis & parameter learning

The derivative ∂Pr(e)
∂θx|u

is essential for sensitivity analysis—it is the basis for

an efficient approach that identifies minimal network parameters changes that
are necessary to satisfy constraints on probabilistic queries [1]. This deriva-
tive is also crucial for gradient ascent approaches for learning network pa-
rameters as it is required to compute the gradient used for deciding moves
in the search space [13]. This derivative equals ∂f(e)

∂θx|u
, and can be obtained

as given by Equation 2. The only other method we are aware of to com-
pute this derivative (beyond the one in [3]) is the one using the identity
∂Pr(e)/∂θx|u = Pr(x,u, e)/θx|u, which requires θx|u 6= 0 [13]. Hence, our re-
sults seem to suggest the first general approach for computing this derivative
using standard jointree propagation.

Bounding rounding errors

Jointree propagation gives exact results only when infinite precision arith-
metic is used. In practice, however, finite precision floating–point arithmetic
is typically used. The differential semantics of jointree propagation allows us
to bound the rounding error in the computed probability of evidence, un-
der a particular model of error propagation. Specifically, note that during the
inward–pass of Hugin propagation, the value of an entry in separator table Φij

is simply the addition of compatible entries in the cluster table Φi. Moreover,
the value of an entry in a cluster table Φi is simply the multiplication of its
initial value with all corresponding entries in neighboring separators. Let δ
be the local rounding error generated when computing the value of a cluster
or separator. It is reasonable to assume that |δ| ≤ ε|v|, where v is the clus-
ter/separator entry we would have computed using (local) infinite–precision

12

computation, and ε is a constant representing the machine–specific relative
error occurring in the floating–point representation of a real number [8]. Let
us finally assume that the probability of evidence is computed by summing
the entries of the root cluster (after the inward–pass of Hugin propagation has
finished). We can then bound the rounding error in the computed probability
of evidence by:

ε

∑
c

Φr(c) +
∑
i,c

Φi(c) +
∑
ij,s

Φij(s)

 , (3)

where r is the root cluster. Interestingly enough, this bound can be computed
easily during the outward–pass of Hugin propagation. The bound follows im-
mediately assuming a model of error propagation where the total error in
computing quantity f is

∑
v δv∂f/∂v, where v ranges over all intermediate

computations and δv is the local rounding error generated when performing
the intermediate computation v [8].

A similar bound for the rounding error in Shenoy–Shafer propagation can also
be derived under similar assumptions.

5 Evaluating and differentiating arithmetic circuits

Our goal in this section is to discuss the evaluation and differentiation of arith-
metic circuits, given a particular circuit input. Evaluation is straightforward,
but differentiation can be a bit more involved. We discuss two main results
relating to differentiation. First, that the partial derivative of the circuit out-
put with respect to each and every circuit node can all be computed in time
linear in the circuit size. Second, we discuss three different numeric schemes
for differentiating a circuit that vary mainly in their space requirements. One
of these methods corresponds to the outward phase of Shenoy–Shafer propa-
gation, and another corresponds to the outward phase of Hugin propagation.
Therefore, given our interpretation of jointree propagation as circuit evaluation
and differentiation, we now understand the difference between Shenoy–Shafer
and Hugin as a difference in how differentiation is performed.

Basic method for circuit differentiation

In what follows, we will not distinguish between an arithmetic circuit and its
unique output node. Let f be an arithmetic circuit and let v be one of its
nodes. We are interested in the partial derivative of f with respect to node

13

v, ∂f/∂v. We will first discuss a general, basic method for computing such
derivatives, which requires that we store two numbers with each circuit node
v:

• vr(v): stores the value of node v;
• dr(v): stores the derivative of f with respect to v.

We will then discuss two other methods that require less space, but are valid
only for a specific class of arithmetic circuits (including those generated by
jointrees).

The key observation is to view the circuit f as a function of each and every
circuit node v. If v is the root node (circuit output), then ∂f

∂v
= 1. If v is not

the root node, and has parents p, then by the chain rule:

∂f

∂v
=

∑
p

∂f

∂p

∂p

∂v
.

Suppose now that v′ are the other children of parent p. If parent p is a multi-
plication node,

∂p

∂v
=
∂(v

∏
v′)

∂v
=

∏
v′.

Similarly, if parent p is an addition node,

∂p

∂v
=
∂(v +

∑
v′)

∂v
= 1.

With these equations, we can recursively compute the partial derivatives of f
with respect to any node v in the circuit in time linear in the size of the circuit
[3]. The procedure is described below in terms of two passes. An upward–pass
which evaluates the circuit by setting the values of vr(v) registers, and a
downward–pass which sets the values of dr(v) registers (dr(v) is initialized
to zero except that dr(v) = 1 for root v). From here on, when we say an
upward–pass of the circuit, we will mean a traversal of the circuit where the
children of a node are visited before the node itself is visited. Similarly, in a
downward–pass, the parents of a node will be visited first.

• Upward–pass: At node v, compute the value of v and store it in vr(v).
• Downward–pass: At node v and for each parent p, increment dr(v)
· by dr(p) if p is an addition node;
· by dr(p)

∏
vr(v′) if p is a multiplication node, where v′ are the other

children of p.

14

Therefore, a single upward–pass through the circuit will evaluate it, and a
single downward–pass will compute all its derivatives. It should be clear that
the upward–pass takes time linear in the circuit size, where size is defined as
the number of circuit edges. The downward–pass, however, is only linear in
case each multiplication node has a bounded number of children, which would
ensure that the expression dr(p)

∏
vr(v′) takes bounded time to evaluate. We

can always convert an arithmetic circuit into one where each multiplication
node has two children, while only increasing its size by a linear factor. 5 But a
more sophisticated approach is described in [2], which attains linearity without
increasing the circuit size.

The basic differentiation method described above uses two registers per cir-
cuit node and is the one used in [3]. The circuits generated from jointrees have
specific properties, however, which allow us to do better in terms of space us-
age. Specifically, these circuits alternate between addition and multiplication
nodes; the output node is always an addition node; and each multiplication
node has a single parent. Given these properties, one can employ a differen-
tiation scheme that uses less space than is suggested above. We discuss two
such methods in the following sections:

• Method A: Requires two registers for each addition node, and no registers
for multiplication nodes.

• Method B: Requires only one register for each addition and multiplication
node.

Method A for circuit differentiation

This method uses two registers vr(v) and dr(v) for every addition node v.
Registers are initialized to zero except for the root v where dr(v) = 1. Only
multiplication nodes v are visited during each pass, where node v must have
a unique parent p:

• Upward-pass: At multiplication node v, compute the value of v and accu-
mulate the result into vr(p).

• Downward-pass: At multiplication node v, for each addition child c, compute
dr(p)

∏
vr(c′) and accumulate the result into dr(c), where c′ ranges over

other children of v.

Figure 6 depicts the contents of vr and dr registers after each pass of Method A
on a simple circuit. Note that similar to the basic method, the downward–pass

5 Basically, if v is a multiplication node with n children, we can replace v by a
sequence of multiplication nodes each with only two children. This increases the
number of nodes in the circuit by n− 2 and the number of edges by n− 2.

15

* *

+

+ +

*** *

λa λb λb λaθa θb|a θb|a θb|a θb|a θa
1 1 0 1.6 .2 .8 .7 .3 .4

.2 .7

.4

* *

+

+ +

*** *

λa λb λb λaθa θb|a θb|a θb|a θb|a θa
1 1 0 1.6 .2 .8 .7 .3 .4

.6.2 .4.7

1.4

Fig. 6. On the left, an arithmetic circuit after the upward–pass of Method A. On
the right, the same circuit after the downward–pass of Method A. vr registers are
shown on the left, and dr registers on the right.

of Method A is not necessarily linear if the number of children per multipli-
cation node is not bounded. The correspondence of this method to Shenoy–
Shafer propagation is given next.

Theorem 5 Let f be the embedded circuit in jointree J and let s be an ad-
dition node in f which corresponds to instantiation s of separator ij. Af-
ter Shenoy–Shafer propagation and Method A passes are finished, we have
Mij(s) = vr(s) and Mji(s) = dr(s), where cluster j is closer to the root than
cluster i.

Method A can afford to take much less space than the basic method due to
the following property. If v is a multiplication node, then v must have a single
parent p, which is an addition node. Hence, ∂f/∂v = ∂f/∂p, and the method
avoids using the register dr(v) as it will have the same value as dr(p). It
also never stores the value of v explicitly: once that value is computed, it is
immediately accumulated at the parent p in register vr(p).

Finally, note that this method does not compute derivatives with respect to
input nodes v, but such derivatives can be computed easily if need be (see
Theorem 3).

Method B for circuit differentiation

We now discuss another differentiation scheme with reduced space require-
ments that works differently than Method A. This method is used by the
outward–pass of Hugin propagation and uses only one register r(v) for each
addition and multiplication node. Specifically, Method B evaluates the circuit
in a classical way, storing the computed value of each node v in register r(v).

16

* *

+

+ +

*** *

λa λb λb λaθa θb|a θb|a θb|a θb|a θa
1 1 0 1.6 .2 .8 .7 .3 .4

0

.2

.28

.7

.4

.2 .7 0

.12 * *

+

+ +

*** *

λa λb λb λaθa θb|a θb|a θb|a θb|a θa
1 1 0 1.6 .2 .8 .7 .3 .4

0

.12

.28

.28

.4

.12 .28 0

.12

Fig. 7. On the left, an arithmetic circuit after the upward–pass of Method B. On
the right, the same circuit after the downward–pass of Method B.

But it overrides these values in the downward–pass, where the value of each
node is replaced by v ∂f/∂v. Only addition nodes (except the root) are visited
in the downward–pass: 6

• Upward–pass: At node v, compute the value of v and store it in r(v).
• Downward–pass: At addition node v 6= f with parents p and multiplication

children c:
· save r(v) into old ;
· reset r(v) to

∑
p r(p);

· multiply r(v)/old into r(c) for each child c.

Figure 7 depicts the contents of r registers after each pass of Method B on a
simple arithmetic circuit. Method B takes time linear in the circuit size. Its
correspondence to Hugin propagation is given next.

Theorem 6 Let f be the embedded circuit in jointree J , c be a multiplication
node in f corresponding to instantiation c of cluster i, and s be an addi-
tion node in f corresponding to instantiation s of separator ij. After Hugin
propagation and Method B passes are finished, we have Φi(c) = r(c) and
Φij(s) = r(s).

The main insight behind Method B is as follows. If v is a node with a multipli-
cation parent p, then p = v ∂p/∂v. Now, if all parents p of v are multiplication
nodes, then ∂f/∂v =

∑
p(∂f/∂p)(∂p/∂v) by the chain rule. Multiplying both

sides by v, we get the important identity:

v ∂f/∂v =
∑
p

(∂f/∂p) v (∂p/∂v) =
∑
p

p ∂f/∂p.

6 Note that 0/0 is defined to be 0.

17

Now when visiting addition node v, assume by induction that the register r(p)
of its parent p contains p ∂f/∂p. The register of v is then guaranteed to contain
v ∂f/∂v when it is reset as given above. Moreover, if c is a multiplication
child of v, then v must be the only parent of c, leading to ∂f/∂c = ∂f/∂v =
r(v)/rold(v). Therefore, after node v is processed, the register r(c) of each of its
children c will contain c ∂f/∂c. And when the downward–pass is completely
over, the register r(v) of every node will contain v ∂f/∂v.

This method takes time which is linear in the circuit size. It does not compute
the value v ∂f/∂v for input nodes, but that can be computed easily. The
problem, however, is that this quantity is not useful for obtaining ∂f/∂v unless
v 6= 0. Therefore, this method is limited compared to Method A as it allows
us to compute derivatives only when nodes have non-zero values.

6 A new perspective on factoring graphical models

We have shown in this paper that each jointree can be viewed as an implicit
representation of an arithmetic circuit that computes the network polynomial.
Moreover, we have shown that jointree propagation corresponds to an evalu-
ation and differentiation of the circuit, where the difference between Shenoy–
Shafer and Hugin propagation amounts to a difference between the way they
carry out the differentiation task. These results have been useful in unifying
the circuit approach presented in [3] with jointree approaches, and in uncov-
ering more properties of jointree propagation.

Another outcome of these results relates to the level at which it is useful to
phrase the problem of factoring graphical probabilistic models. Specifically,
the perspective we are promoting here is that probability distributions de-
fined by graphical models should be viewed as multi–linear functions, and the
construction of jointrees should be viewed as a process of constructing arith-
metic circuits that compute these functions. That is, the fundamental object
being factored is a multi–linear function, and the fundamental result of the
factorization is an arithmetic circuit. A graphical model is a useful abstraction
of the multi–linear function, and a jointree is a useful structure for embedding
the arithmetic circuit.

This view of factoring is useful since it allows us to cast the factoring problem
in more refined terms, which puts us in a better position to exploit the local
structure of graphical models in the factorization process. Note that the topol-
ogy of a graphical model defines the form of the multi–linear function, while
the model’s local structure (as exhibited in its quantification) constrains the
values of variables appearing in the function. One can factor a multi–linear
function without knowledge of such constraints, but the resulting factoriza-

18

tions will not be optimal. For a dramatic example, consider a fully connected
network with variables X1, . . . , Xn, where all parameters are equal (1

2
). Any

jointree for the network will have a cluster of size n, leading to O(exp(n))
complexity. There is, however, a circuit of O(n) size here, since the network
polynomial can be easily factored as: f = (1

2
)
n ∏n

i=1(λxi
+ λx̄i

).

Hence, in the presence of local structure, it appears more promising to factor
the graphical model into the more refined arithmetic circuit since not every
arithmetic circuit can be embedded in a jointree. This promise is made appar-
ent by the results in [4], which we sketch next. First, the multi–linear function
of a belief network is “encoded” using a propositional theory, which is expres-
sive enough to capture the form of the multi–linear function in addition to
constraints on its variables. The theory is then compiled into a special logical
form, known as decomposable negation normal form. An arithmetic circuit is
finally extracted from that form. The method was able to generate relatively
small arithmetic circuits for a significant suite of real-world belief networks
with treewidths up to 60. 7

It worth mentioning here that the above perspective is in harmony with re-
cent approaches that represent probabilistic models using algebraic decision
diagrams (ADDs), citing the promise of ADDs in exploiting local structure [6].
ADDs and related representations, such as edge–valued decision diagrams, are
known to be compact representations of multi–linear functions. Moreover, each
of these representations can be expanded in linear time into an arithmetic cir-
cuit that satisfies some strong properties [5]. Hence, such representations are
special cases of arithmetic circuits, which leads to practical implications that
are explored in [5].

We finally note that the relationship between multi–linear functions (poly-
nomials in general) and arithmetic circuits is a classical subject of algebraic
complexity theory [15]. In this field of complexity, computational problems are
expressed as polynomials, and a central question is that of determining the size
of the smallest arithmetic circuit that computes a given polynomial, leading
to the notion of circuit complexity. Using this notion, it is then meaningful to
talk about the circuit complexity of a graphical model: the size of the small-
est arithmetic circuit that computes the multi–linear function induced by the
model.

7 Refinements on jointree methods, such as zero compression, take advantage of
local structure such as determinism. They can be interpreted as identifying circuit
nodes that are stuck to zero and eliminating them. One problem with these methods,
however, is that they perform full propagation with respect to the complete jointree
before they are able to compress it. Hence, they cannot handle networks like those
in [4].

19

Acknowledgment

This work has been partially supported by NSF grant IIS-9988543 and MURI
grant N00014-00-1-0617.

References

[1] Hei Chan and Adnan Darwiche. When do numbers really matter? In Proceedings
of the 17th Conference on Uncertainty in Artificial Intelligence (UAI), pages
65–74, San Francisco, California, 2001. Morgan Kaufmann Publishers, Inc.

[2] Adnan Darwiche. A differential approach to inference in Bayesian networks.
Technical Report D–108, Computer Science Department, UCLA, Los Angeles,
Ca 90095, 1999. To appear in the Journal of ACM.

[3] Adnan Darwiche. A differential approach to inference in Bayesian networks.
In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 123–132, 2000. To appear in Journal of ACM.

[4] Adnan Darwiche. A logical approach to factoring belief networks. In Proceedings
of KR, pages 409–420, 2002.

[5] Adnan Darwiche. On the factorization of multi-linear functions. Technical
Report D–128, Computer Science Department, UCLA, Los Angeles, Ca 90095,
2002.

[6] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD: Stochastic
planning using decision diagrams. In Proceedings of the 15th Conference on
Uncertainty in Artificial Intelligence (UAI), pages 279–288, 1999.

[7] Cecil Huang and Adnan Darwiche. Inference in belief networks: A procedural
guide. International Journal of Approximate Reasoning, 15(3):225–263, 1996.

[8] Masao Iri. Simultaneous computation of functions, partial derivatives and
estimates of rounding error. Japan J. Appl. Math., 1:223–252, 1984.

[9] F. V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in recursive
graphical models by local computation. Computational Statistics Quarterly,
4:269–282, 1990.

[10] James Park. MAP complexity results and approximation methods. In
Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 388–396, San Francisco, California, 2002. Morgan Kaufmann
Publishers, Inc.

[11] James Park and Adnan Darwiche. Approximating MAP using local search.
In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 403–410, San Francisco, California, 2001. Morgan Kaufmann
Publishers, Inc.

20

[12] Graz Rote. Path problems in graphs. Computing Suppl., 7:155–189, 1990.

[13] S. Russell, J. Binder, D. Koller, and K. Kanazawa. Local learning in
probabilistic networks with hidden variables. In Proceedings of the 11th
Conference on Uncertainty in Artificial Intelligence (UAI), pages 1146–1152,
1995.

[14] Prakash P. Shenoy and Glenn Shafer. Propagating belief functions with local
computations. IEEE Expert, 1(3):43–52, 1986.

[15] J. von zur Gathen. Algebraic complexity theory. Ann. Rev. Comp. Sci., 3:317–
347, 1988.

A Proofs of Theorems

Proof of Theorem 1

Consider the following method for computing the probability of evidence in
a jointree. First, choose a root cluster i and poll messages towards the root.
Second, compute the probability of evidence as

∑
c

∏
jMji, where C are the

variables of cluster i. It is not hard to realize that the circuit embedded in a
jointree represents a trace of the previous computation. 2

Proof of Theorem 2

Follows immediately from the correspondence of Shenoy–Shafer propagation
to Method A for circuit differentiation as given by Theorem 5. 2

Proof of Theorem 3

Suppose that λX is assigned to cluster i in the given jointree J . Let us augment
the jointree by an additional cluster k which contains only variable X, leading
to jointree J ′. Make cluster k a neighbor of cluster i in jointree J ′ and assign
evidence table λX to cluster k (instead of cluster i). Note that the separator be-
tween clusters i and k will have a single variableX. Moreover, in the embedded
circuit of jointree J ′, λx will have a single multiplication node m as a parent,
and m will have a single addition node n as a parent, which corresponds to the
instantiation x of separator X. Hence, ∂f/∂λx = ∂f/∂m = ∂f/∂n. Moreover,
given Theorem 2, we have ∂f/∂n = Mik(x) with respect to jointree J ′, which
is equal to [

∑
C\X

∏
jMji

∏
ψ 6=λX

ψ](x) in the original jointree J as given by
Equation 1. The proof for Equation 2 is similar. 2

21

i
k

j q

p

root

j

q

Fig. A.1. Clusters in a jointree.

Proof of Theorem 4

Follows immediately from the correspondence of Hugin propagation to Method B
for circuit differentiation as given by Theorem 6. 2

Proof of Theorem 5

First, there is a one-to-one correspondence between addition nodes (except the
root) in the embedded circuit f and instantiations of separators in jointree J .
The same is true for multiplication nodes and instantiations of clusters.

Part 1

Let i be a cluster, k be its neighboring cluster closest to the root, and j be other
neighboring clusters; see Figure A.1. Let ski, sji and ci be instantiations of the
corresponding separators and clusters. Also, let τi be all evidence indicators
and network parameters assigned to cluster i. In the circuit f , the children
of addition node ski will be all compatible multiplication nodes ci. Moreover,
the children of multiplication node ci will be all compatible addition nodes
sji, in addition to all compatible evidence indicators and network parameters
τi. According to Shenoy–Shafer propagation, we have

Mik(sik) =
∑

ci∼sik

∏
j, sji∼ci

Mji(sji)
∏
τi∼ci

τi,

where ∼ denotes the compatibility relation among instantiations. Assume by
induction that each register vr(sji) will contain Mji(sji) after the message Mji

has been computed. It then follows that register vr(sik) will contain Mik(sik)

22

after the message Mik has been computed. The base case for this induction
is when cluster i has a single neighbor k, where Shenoy–Shafer propagation
gives:

Mik(sik) =
∑

ci∼sik

∏
τi∼ci

τi,

which is immediately equal to vr(sik).

Part 2

Now let p be the neighbor of cluster k closest to the root, and let q be other
neighbors of k where p 6= i and q 6= i; see Figure A.1. The parents of addition
node ski will be all compatible multiplication nodes ck. Moreover, each multi-
plication node ck will have a single parent, which is the compatible addition
nodes spk. The other children of ck, beyond the compatible ski, will be all
compatible addition nodes sqk and compatible inputs τk. Now, according to
Shenoy–Shafer propagation, we have

Mki(ski) =
∑

ck∼ski,spk∼ck

Mpk(spk)
∏

q, sqk∼ck

Mqk(sqk)
∏

τk∼ck

τk.

According to Method A,

dr(ski) =
∑

ck∼ski,spk∼ ck

dr(spk)
∏

q, sqk∼ck

vr(sqk)
∏

τk∼ck

τk.

We have proven in Part 1 that vr(sqk) = Mqk(sqk). If we also assume by
induction that register dr(spk) contains Mpk(spk) after message Mpk has been
computed, it follows then that register dr(ski) must contain Mki(ski) after
message Mki has been computed. The base case for this induction is when
cluster k is the root. We no longer have the special neighbor q in this case,
and Shenoy–Shafer gives:

Mki(ski) =
∑

ck∼ski

∏
q, sqk∼ck

Mqk(sqk)
∏

τk∼ck

τk,

while Method A gives:

dr(ski) =
∑

ck∼ski

dr(f)
∏

q, sqk∼ck

vr(sqk)
∏

τk∼ck

τk.

It then follows that Mki(ski) = dr(ski) since dr(f) = 1 by description of
Method A, and Mqk(sqk) = vr(sqk) by Part 1 (f is the root node in the
arithmetic circuit). 2

23

Proof of Theorem 6

To prove this theorem, we need to distinguish between the values of registers
r during the upward–pass and downward–pass of Method B, so we will use ru

and rd to represent these values, respectively.

Part 1

We will show that after the inward–pass of Hugin, we have Φi(ci) = ru(ci)
and Φki(ski) = ru(ski). But this is straightforward given the correspondence
between the definition of a circuit embedded in a jointree, and given that
Hugin initializes all separator entries to 1. Hence, the Hugin inward–pass is
simply evaluating the circuit.

Part 2

Consider the same setup as in the proof of Theorem 5. Suppose that messages
have been passed into k, and k is about to send a message to i. Assume
by induction that Φk(ck) = rd(ck). We want to show that after k sends its
message into i, we have Φi(ci) = rd(ci) and Φki(ski) = rd(ski). Consider the
following:

• before cluster k sends its message to i, we have Φi(ci) = ru(ci) and Φki(ski) =
ru(ski) by Part 1;

• the correspondence between addition nodes ski and entries of separator table
Φki;

• the correspondence between multiplication nodes ci, ck and entries of cluster
tables Φi,Φk;

• the correspondence between the processing of all addition nodes ski by
Method B and the passing of message Mki by Hugin propagation.

Hence, after passing the message form k to i, we must have Φi(ci) = rd(ci)
and Φki(ski) = rd(ski).

The base case for this induction is when cluster k is the root. Note that the
downward–pass of Method B does not change the registers of the root node
f , neither does it change the registers of its children which correspond to the
entries of the root cluster k. Hence, immediately after the upward–pass of
Method B, we have Φk(ck) = rd(ck) = ru(ck). 2

24

