
Approximating MAP using Local Search

James D. Park and Adnan Darwiche

Computer Science Department
University of California
Los Angeles, CA 90095

{jd,darwiche}@cs.ucla.edu

Abstract

MAP is the problem of finding a most prob-
able instantiation of a set of variables in a
Bayesian network, given (partial) evidence
about the complement of that set. Unlike
computing priors, posteriors, and MPE (a
special case of MAP), the time and space
complexity of MAP is not only exponen-
tial in the network treewidth, but also in a
larger parameter known as the “constrained”
treewidth. In practice, this means that com-
puting MAP can be orders of magnitude
more expensive than computing priors, pos-
teriors or MPE. For this reason, MAP com-
putations are generally avoided or approxi-
mated by practitioners.

We have investigated the approximation of
MAP using local search. The local search
method has a space complexity which is ex-
ponential only in the network treewidth, as
is the complexity of each step in the search
process. Our experimental results show that
local search provides a very good approxima-
tion of MAP, while requiring a small number
of search steps. Practically, this means that
the average case complexity of local search
is often exponential only in treewidth as op-
posed to the constrained treewidth, mak-
ing approximating MAP as efficient as other
computations.

1 Introduction

The task of computing the Maximum a Posterior hy-
pothesis (MAP) is to find the most likely configuration
of a set of variables (which we call the MAP variables)
given (partial) evidence about the complement of that
set (the non-MAP variables).

One specialization of MAP, which has received a
lot of attention, is the Most Probable Explanation
(MPE) [15]. MPE is the problem of finding the most
likely configuration of a set of variables given a partic-
ular instantiation of the complement of that set. The
primary reason for this attention to MPE is that it
seems to be a much simpler problem than its MAP
generalization.

Unfortunately, MPE is not always suitable for the task
at hand. For example, in system diagnosis, where the
health of each component is represented using a vari-
able, one is interested in finding the most likely config-
uration of health variables only—the likely input and
output values for each component are not of interest.
Additionally, the projection of an MPE solution on
these health variables is not necessarily a most likely
configuration. Nor is the configuration which results
from choosing the most likely state of each variable
separately.

Computing MAP seems to be significantly more diffi-
cult than computing priors, posteriors or MPE. All of
these problems are NP-Hard, including their approxi-
mations [1, 3], but the computational resources needed
to solve MAP using state-of-the-art algorithms are
much greater than those needed to compute MPE, for
example. Suppose that we decide to solve MAP and
MPE using a variable elimination algorithm [16, 8].
Although we can use any elimination order to com-
pute MPE, we can only use a subset of these orders
to compute MAP. Specifically, for an elimination algo-
rithm to be sound for MAP, it requires that we elim-
inate the non-MAP variables first. This reduces the
space of elimination orders, possibly throwing out the
most efficient orders from consideration. As an exam-
ple, consider the network in Figure 1, which admits 6
different elimination orders. Any of these orders can
be used to solve MPE. To compute MAP of variables
B,C, however, only two of these orders can be used
and the width of each is 2. Note that we could use an
order of width 1 for computing MPE in this case.



A

B C

Order Width MPE Order MAP Order
ABC 2 X X
ACB 2 X X
BAC 1 X
BCA 1 X
CAB 1 X
CBA 1 X

Figure 1: A simple network, its possible elimination
orders, the widths, and whether or not each order can
be used for MPE, and MAP(B,C). Requiring that A
be eliminated before B and C forces the width of the
elimination order used for MAP(B,C) to be 2, while
an order of width 1 can be used for MPE.

The complexity of a variable elimination algorithm is
exponential in the (induced) width of the used elimina-
tion order.1 Hence, the increase in such a width when
computing MAP can be critical: it may simply make a
particular network inaccessible to variable elimination
algorithms when computing MAP, even though it is
accessible when computing MPE.

In order to assess the magnitude of increase in width
caused by restricting elimination orders, we gener-
ated 1000 Bayesian networks randomly as given in
Appendix A and then computed the constrained and
unconstrained elimination orders for these networks
using the min-fill heuristic [12, 9]. For constrained
orders, all non-MAP variables were eliminated first.
Each network had 100 nodes and the set of MAP vari-
ables consisted of 10-25 root nodes. We measured the
minimum, maximum, average and weighted average
width for the two classes of orders.The average was
computed as

∑k

i=1
wi/k. Since the complexity is ex-

ponential in the width, a weighted sum gives a better
representation of the average complexity. It was com-
puted as log2(

∑k

i=1
2wi/k). Figure 2 summarizes the

results.

In many cases, the constrained width was much larger
than the unconstrained width, often making the MAP
problem unreasonably expensive, even when the MPE
problem could be solved exactly with reasonable re-
sources. For example, the weighted average width in-

1The width of an elimination order with respect to a
network is defined as the size of the maximal clique -1 in
a jointree constructed based on the elimination order. It
can also be equivalently defined as the number of variables
-1 in the largest table constructed when running variable
elimination using the order.

creased from about 13 to about about 27 due to MAP
constraints. That is, even though the largest table con-
structed by variable elimination has about 214 entries
when computing MPE, the algorithm needs to con-
struct a table with about 228 entries when computing
MAP.

The additional resources needed to solve MAP are not
only a property of variable elimination algorithms, but
are also shared by other algorithms, such as clustering
[13, 10, 9] and conditioning [4]. There is definitely a
gap between our ability to solve MAP and MPE prob-
lems, which is best witnessed by the lack of support
for MAP algorithms in existing commercial tools for
Bayesian network inference.

In this paper, we propose and investigate a method
for approximating MAP using local search. The lo-
cal search method has a space complexity which is
exponential only in the network treewidth, as is the
complexity of each step in the search process. Our
experimental results show that local search provides
a very good approximation of MAP, while requiring a
small number of search steps. Practically, this means
that the average case complexity of local search is of-
ten exponential only in treewidth as opposed to the
constrained treewidth, making MAP computations as
efficient as other computations.2

2 Approximating MAP using Local

Search

Given a Bayesian network B which induces a proba-
bility distribution Pr , and given a set of MAP vari-
ables S, the goal of a MAP algorithm is to compute
an instantiation s that maximizes Pr(s | e) for some
evidence e.3

Since computing MAP is often intractable, approxima-
tion techniques are needed. A common approximation
technique is to compute an MPE and then project the
result on the MAP variables. That is, if S′ is the
complement of variables S ∪ E, we compute an in-
stantiation s, s′ that maximizes Pr(s, s′ | e) and then
return s. Another approximation is to compute pos-
terior marginals for MAP variables, Pr(S | e), S ∈ S,
and then choose the most likely state s of each vari-

2The network treewidth is defined as the width of its
best elimination order. The constrained treewidth is de-
fined as the width of its best constrained elimination or-
ders; hence, is defined with respect to a set of MAP
variables.

3We are using the standard notation: variables are de-
noted by upper–case letters (A) and their values by lower–
case letters (a). Sets of variables are denoted by bold–face
upper–case letters (A) and their instantiations are denoted
by bold–face lower–case letters (a).



0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18

C
o
n
s
t
r
a
i
n
e
d
(
M
A
P
)
 
W
i
d
t
h

Width

Min
Average

Weighted Average
Max

Figure 2: The minimum, maximum, average and weighted average widths (both constrained and unconstrained).
Notice that the constrained width can grow to be unmanageable even for networks with small unconstrained
width.

able given e. In [7] genetic algoritms were applied
to approximate the best k configurations of the MAP
variables (this problem is known as partial abduction).
We investigate in this paper a different approximation
technique based on local search, which works as fol-
lows:

1. Start from an initial guess s at the solution.

2. Iteratively try to improve the solution by moving
to a better neighbor s′: Pr(s′ | e) > Pr(s | e), or
equivalently Pr (s′, e) > Pr (s, e).

A neighbor of instantiation s is defined as an instanti-
ation which results from changing the value of a single
variable X in s. If the new value of X is x, we will
denote the resulting neighbor by s − X, x. In order
to perform local search efficiently, we need to compute
the scores for all of the neighbors s − X, x efficiently.
That is, we need to compute Pr(s − X, x, e) for each
X ∈ S and each of its values x not in s. If variables
have binary values, we will have | S | neighbors in this
case.

Local search has been proposed as a method for ap-
proximating MPE [11, 14]. For MPE, the MAP vari-
ables S contain all variables which are not in E (the
evidence variables). Therefore, the score of a neighbor,
Pr(s−X, x, e), can be computed easily since s−X, x, e
is a complete instantiation. In fact, given that we have
computed Pr(s, e), the score Pr(s − X, x, e) can be
computed in constant time.4

4This assumes that none of entries in the CPTs are 0.

Unlike MPE, computing the score of a neighbor,
Pr(s−X, x, e), in MAP requires a global computation
since s− X, x, e may not be a complete instantiation.
One of the main observations underlying our approach,
however, is that the score Pr (s−X, x, e) can be com-
puted in O(n exp(w)) time and space where n is the
number of network variables and w is the width of a
given elimination order (we can use any elimination
order for this purpose, no need for any constraints).
In fact, we can even do better than this by computing
the scores of all neighbors Pr(s−X, x, e) (that is, for
all X ∈ S and every value x of X) in O(n exp(w)) time
and space. There are a couple of ways to do this. We
can use a modification of the technique of fast retrac-
tion in jointrees, which requires working with a special
kind of a jointree [2]. An alternative, more direct ap-
proach is to use differential inference [5].

According to this approach, the probability distribu-
tion of a Bayesian network can be represented as a
multivariate polynomial P (λx, . . .), in which we have
a variable λx for each value x of each network vari-
able. Variables λx are called evidence indicators as
we can use them to capture evidence: The probabil-

If there are 0 entries in the CPTs, it may take time linear
in the number of network variables to compute the score.
Pr(s, e) is the product of the single entry of each CPT
that is compatible with s, e. When changing the state of
variable X from x to x′, the only values in the product that
change are those from the CPTs of X and its children. If
none of the CPT entries are 0, Pr(s − X, x′, e) can be
computed by dividing Pr (s, e) by the old and multiplying
by the new entry for the CPTs for X and its children. This
can be done in constant time if the number of children is
bounded by a constant.



ity of some evidence e can be obtained by evaluating
the polynomial P while setting each indicator λx to
1 if x is consistent with e and to 0 otherwise. The
value of the polynomial under these indicator settings
is denoted by P (e). As is shown in [5]:

Pr(s − X, x, e) = ∂P (s, e)/λx.

Moreover, we can compute the above partial deriva-
tives for all λx in only O(n exp(w)) time and space.5

This means that if we have an elimination order of
width w for the given Bayesian network, then we can
perform each search step in O(n exp(w)) time and
space. As we shall see later, it takes a small num-
ber of search steps to obtain a good MAP solution.
Hence, the overall runtime is often O(n exp(w)) too.
Therefore, we can solve MAP in time and space which
are exponential in the unconstrained width instead of
the constrained one, which is typically much larger.

The local search method proposed in this section dif-
fers from the local search methods used for MPE in
that the unconstrained width must be small enough
so that a search step can be performed relatively effi-
ciently. It is pointless to use this method to approx-
imate MPE since in the time to take one step, the
MPE could be computed exactly. This method is ap-
plicable when the unconstrained width is reasonable but
the constrained width is not (see Figure 2).

3 Description of the Methods Used

3.1 Search Methods

We tested two common local search methods, hill
climbing with random restart and taboo search. They
differ mainly in how they proceed once a peak (local
maximum) is reached.

Hill climbing with random restart proceeds by repeat-
edly changing the the state of the variable that cre-

5The view of a network distribution as a multivariate
polynomial P (λx, . . .) is what motivated our investigation
of local search methods. Specifically, the probability of
instantiation s corresponds to the value of polynomial P
under a particular indicators setting (λx = 1 if x is con-
sistent with s and λx = 0 otherwise.) This allows us to
view the computation of MAP as an optimization problem
where we are looking for the values of indicators λx (in-
stantiation s) that maximize the value of polynomial P .
A natural way for addressing this problem is to use gradi-
ent descent search, especially that computing the gradient
∂P/∂λx can be done efficiently. Interestingly enough, the
derivative ∂P (s)/∂λx is nothing but the probability of cur-
rent instantiation s after having changed a single variable
X to x, Pr (s − X, x). Our initial approach was to imple-
ment a standard gradient descent method, where we take
a small step in the direction of the gradient. But we then
realized that the presented (simpler) approach works quite
well, so we opted for it instead.

ates the maximum probability change. When a peak
is reached, a series of random moves are taken to get
to a new start location. Figure 3 gives the algorithm
explicitly.

Another variant of hill climbing we implemented is
taboo search. Taboo search is similar to hill climb-
ing except that the next state is chosen as the best
state that hasn’t been visited recently. Because the
number of iterations is relatively small we save all of
the previous states so that at each iteration a unique
point is chosen. Pseudocode for taboo search appears
in Figure 4.

3.2 Initialization

The quality of the solution returned by a local search
routine depends to a large extent on which part of
the search space it is given to explore. We imple-
mented several algorithms to compare the solution
quality with different initialization schemes. Suppose
that n is the number of network variables, w is the
width of a given elimination order, and m is the num-
ber of MAP variables.

1. Random initialization (Rand). For each MAP
variable, we select a value uniformly from its set
of states. This method takes O(m) time.

2. MPE based initialization (MPE). We compute the
MPE solution given the evidence. Then, for each
MAP variable, we set its value to the value that
the variable takes on in the MPE solution. This
method takes O(n exp(w)) time.

3. Maximum likelihood initialization (ML). For each
MAP variable X , we set its value to the instance
x that maximizes Pr(x | e). This method takes
O(n exp(w)) time.

4. Sequential intialization (Seq). This method con-
siders the MAP variables X1, . . . , Xm, choosing
each time a variable Xi that has the highest prob-
ability Pr(xi | e,y) for one of its values xi, where
y is the instantiation of MAP variables considered
so far. This method takes O(mn exp(w)) time.

4 Experimental Results

Two search methods (Hill and Taboo) and four ini-
tialization methods (Rand, MPE, ML, Seq) lead to 8
possible algorithms. Each of the initialization meth-
ods can also be viewed as an approximation algorithm
since one can simply return the computed initializa-
tion. This leads to a total of 12 different algorithms.
We experimentally evaluated and compared 11 of these



Given: Probability distribution Pr , evidence e, MAP variables S.
Compute: An instantiation s which (approximately) maximizes Pr(s | e).

Initialize current state s.
sbest = s

Repeat many times:
Compute the score Pr(s− X, x, e) for each neighbor s − X, x.
If no neighbor has a higher score that the score for s then

Repeat for several times
s = s

′ where s
′ is a randomly selected neighbor of s.

Else
s = s

′ where s
′ is the neighbor with the highest score.

If Pr(s,e) > Pr(sbest , e) then
sbest = s

Return sbest

Figure 3: Hill climbing with random restart. Notice that when the algorithm reaches a peak, it performs a
random walk to get to the next state.

Given: Probability distribution Pr , evidence e, MAP variables S.
Compute: An instantiation s which (approximately) maximizes Pr(s | e).

Initialize current state s.
sbest = s

Repeat many times
Add s to visited

Compute the score Pr(s− X, x, e) for each neighbor s − X, x.
s = s

′ where s
′ is a neighbor with the highest score not in visited .

If no such neighbor exists (this rarely occurs)
Repeat for several times

s = s
′ where s

′ is a randomly selected neighbor of s.
If Pr(s,e) > Pr(sbest , e) then

sbest = s

Return sbest

Figure 4: Taboo search. Notice that the action taken is to choose the best neighbor that hasn’t been visited.
This leads to moves that decrease the score after a peak is discovered.

algorithms, leaving out the algorithm corresponding to
random initialization.

To test the quality of various algorithms, we gener-
ated random network structures using two generation
methods (see Appendix A). For each structure, we
quantified the CPTs for different bias coefficients from
0 (deterministic except the roots), to .5 (values cho-
sen uniformly) so we could evaluate the influence of
CPT quantification on the solution quality. Each net-
work consisted of 100 variables, with some of the root
variables chosen as the MAP variables. If there were
more than 25 root variables, we randomly selected 25
of them for the MAP variables. Otherwise we used
all of the root variables. We chose root nodes for
MAP variables because typically some subset of the
root nodes are the variables of interest in diagnostic
applications. Evidence was set by instantiating leaf
nodes. Care was taken to insure that the instantia-
tion had a non zero probability. Each algorithm was

allowed 150 network evaluations.6 We computed the
true MAP and compared it to the solutions found by
each algorithm. Additionally, we measured the num-
ber of network evaluations needed to find the solution
each algorithm subsequently returned, and the num-
ber of peaks discovered before that solution was dis-
covered.

We generated 1000 random network structures for each
of the two structural generation methods. For each
random structure generated, and each quantification
method, we quantified the network, computed the ex-
act MAP, and applied each of the approximation algo-
rithms. Figures 5 and 6 show the solution quality of
each of the methods by reporting the fraction of net-
works that were solved correctly; that is, the approxi-
mate answer had the same value as the exact answer.

6An evaluation takes O(n exp(w)) time and space,
where n is the number of network variables and w is the
width of given elimination order.



100

200

300

400

500

600

700

800

900

1000

0 0.125 0.25 0.375 0.5

#
 
s
o
l
v
e
d
 
c
o
r
r
e
c
t
l
y

Bias Coefficent

Rand-Hill
Rand-Tab

ML
ML-Hill
ML-Tab

MPE
MPE-Hill
MPE-Tab

Seq
Seq-Hill
Seq-Tab

960

965

970

975

980

985

990

995

1000

0 0.125 0.25 0.375 0.5

#
 
s
o
l
v
e
d
 
c
o
r
r
e
c
t
l
y

Bias Coefficent

Rand-Hill
Rand-Tab

ML
ML-Hill
ML-Tab

MPE
MPE-Hill
MPE-Tab

Seq
Seq-Hill
Seq-Tab

Figure 5: The solution quality of the various search and initialization methods for the first random generation
method. The y-axis is the number of problems solved correctly out of 1000. The x-coordinate is the bias
coefficient used for quantifying the CPTs. The plot on the right is a zoomed view of the one on the left. The
corresponding raw data appears in table 1.

Data Set 1 Solution Quality
0 .125 .250 .375 .5

Rand-Hill 147 805 917 946 966
Rand-Taboo 181 969 985 993 995

ML 526 497 676 766 817
ML-Hill 920 947 989 993 997

ML-Taboo 942 988 999 999 1000

MPE 999 333 160 127 100
MPE-Hill 999 875 923 952 973

MPE-Taboo 1000 986 992 990 998
Seq 930 965 990 999 997

Seq-Hill 941 971 992 999 997
Seq-Taboo 962 998 1000 1000 1000

Table 1: The solution quality of each method for the
first data set. This data is the same as displayed in
figure 5. The number associated with each method
and bias is the number of instances solved correctly
out of 1000. The best scores for each bias are shown
in bold.

One can draw a number of observations based on these
experiments:

• In each case, taboo search performed slightly bet-
ter than hill climbing with random restarts.

• The search methods were typically able to per-
form much better than the initialization alone.

• Even from a random start, the search methods
were able to find the optimal solution in the ma-
jority of the cases.

Data Set 2 Solution Quality
0 .125 .250 .375 .5

Rand-Hill 20 634 713 799 845
Rand-Taboo 20 851 907 943 965

ML 749 453 495 519 514
ML-Hill 966 922 947 963 962

ML-Taboo 973 960 986 987 990
MPE 858 505 365 275 206

MPE-Hill 961 853 850 874 891
MPE-Taboo 978 952 962 977 980

Seq 988 955 964 985 972
Seq-Hill 988 960 966 986 976

Seq-Taboo 994 977 990 994 994

Table 2: The solution quality of each method for the
second data set. This data is the same as displayed in
figure 6. The number associated with each method
and bias is the number of instances solved correctly
out of 1000. The best scores for each bias are shown
in bold.

• Overall, taboo search with sequential initializa-
tion performed the best, but required the most
network evaluations.

Table 3 contains some statistics on the number of net-
work evaluations (including those used for initializa-
tion) needed to achieve the value that the method fi-
nally returned. The mean number of evaluations is
quite small for all of the methods. Surprisingly, for
the hill climbing methods, the maximum is also quite
small. In fact, after analyzing the results we discov-
ered that the hill climbing methods never improved



0

100

200

300

400

500

600

700

800

900

1000

0 0.125 0.25 0.375 0.5

#
 
s
o
l
v
e
d
 
c
o
r
r
e
c
t
l
y

Bias Coefficent

Rand-Hill
Rand-Tab

ML
ML-Hill
ML-Tab

MPE
MPE-Hill
MPE-Tab

Seq
Seq-Hill
Seq-Tab

900

920

940

960

980

1000

0 0.125 0.25 0.375 0.5

#
 
s
o
l
v
e
d
 
c
o
r
r
e
c
t
l
y

Bias Coefficent

Rand-Hill
Rand-Tab

ML
ML-Hill
ML-Tab

MPE
MPE-Hill
MPE-Tab

Seq
Seq-Hill
Seq-Tab

Figure 6: The solution quality of the various search and initialization methods for the second random generation
method. The y-axis is the number of problems solved correctly out of 1000. The x-coordinate is the bias
coefficient used for quantifying the CPTs. The plot on the right is a zoomed view of the one on the left.

Evaluations Required
Method Mean Stdev Max

Rand Hill 12.5 2.5 21
Rand Taboo 14.3 11.0 144

MPE 1 0 1
MPE Hill 2.6 1.3 8

MPE Taboo 4.0 8.3 137
ML 1 0 1

ML Hill 1.6 .74 4
ML Taboo 1.9 3.3 62

Seq 25 0 25
Seq Hill 25.0 .04 26

Seq Taboo 25.0 .9 45

Table 3: Statistics on the number of evaluations each
method required before achieving the value it eventu-
ally returned. These are based on the random method
2, bias .5 data set. The statistics for the other data
sets are similar.

over the first peak they discovered.7 This suggests
that one viable method for quick approximation is to
simply climb to the first peak and return the result.
Taboo search on the other hand was able to improve
on the first peak in some cases.

7It appears that the random walk used in restarting
does not make eventually selecting a better region very
likely when using so few search steps. Often, when a sub
optimal hill was encountered, the optimal hill was just 2 or
3 moves away. In those cases, the taboo search was usually
able to find it (because its search was more guided), while
random walking was not.

5 Discussion

The primary advantage of approximating MAP us-
ing local search in place of solving it exactly using
structure-based methods is that local search typically
requires much less time and space, yet produces very
good approximations. Given a network with n vari-
ables and an elimination order of width w, local search
requires O(n exp(w)) space. Standard exact algo-
rithms require O(n exp(wc)) space, where wc is the
width of a constrained elimination order. Moreover,
the time complexity of local search is O(in exp(w)),
where i is the number of search steps. An exact algo-
rithm on the other, would require O(n exp(wc)) time.
As our experiments have shown, i can be quite small,
while the difference between exp(w) and exp(wc) can
be quite significant. Therefore, many MAP problems
that are intractable for exact methods can be approx-
imated well and efficiently using local search.

Local search methods also have a big advantage over
MPE and ML approximations (the methods typically
used in place of MAP in diagnosis) in that it is much
more accurate. With just a few (in some of our ex-
periments 2-5) network evaluations, one can use ML
or MPE to initialize, and then hill climb to produce a
drastically better MAP solution. If more accuracy is
desired, sequential initialization can be used with hill
climbing or taboo search instead, at a cost of a few
more network evaluations.

References

[1] G. Cooper. Computational complexity of prob-
abilistic inference using Bayesian belief networks



(Research note). SIAM Journal on Computing,
42:393–405, 1990.

[2] R. Cowell, A. Dawid, S. Lauritzen, and
D. Spiegelhalter. Probabilistic Networks and Ex-
pert Systems. Springer, 1999.

[3] Paul Dagum and Michael Luby. Approximating
probabilistic inference in bayesian belief networks
is NP–hard. Artificial Intelligence, 60:141–153,
1993.

[4] Adnan Darwiche. Any-space probabilistic infer-
ence. In 16th Conference on Uncertainty in Arti-
ficial Intelligence, pages 133–142, 2000.

[5] Adnan Darwiche. A differential approach to infer-
ence in bayesian networks. In 16th Conference on
Uncertainty in Artificial Intelligence, pages 123–
132, 2000.

[6] Adnan Darwiche. Recursive conditioning. Artifi-
cial Intelligence, 126(1-2):5–41, February, 2001.

[7] L. de Campos, J. Gamez, and S. Moral. Partial
abductive inference in bayesian belief networks
using a genetic algorithm. Pattern Recognition
Letters, 20(11-13):1211–1217, 1999.

[8] Rina Dechter. Bucket elimination: A unifying
framework for probabilistic inference. In 12th
Conference on Uncertainty in Artificial Intelli-
gence, pages 211–219, 1996.

[9] Cecil Huang and Adnan Darwiche. Inference
in belief networks: A procedural guide. In-
ternational Journal of Approximate Reasoning,
15(3):225–263, 1996.

[10] F. V. Jensen, S.L. Lauritzen, and K.G. Olesen.
Bayesian updating in recursive graphical models
by local computation. Computational Statistics
Quarterly, 4:269–282, 1990.

[11] K. Kask and Rina Dechter. Stochastic local search
for bayesian networks. In Seventh International
Workshop on Artificial Intelligence, Fort Laud-
erdale, FL, 1999. Morgan Kaufmaann.

[12] U. Kjaerulff. Triangulation of graphs—algorithms
giving small total state space. Technical Report
R-90-09, Department of Mathematics and Com-
puter Science, University of Aalborg, Denmark,
1990.

[13] S. L. Lauritzen and D. J. Spiegelhalter. Lo-
cal computations with probabilities on graphical
structures and their application to expert sys-
tems. Journal of Royal Statistics Society, Series
B, 50(2):157–224, 1988.

[14] O. J. Mengshoel, D. Roth, and D. C. Wilkins.
Stochastic greedy search: Efficiently computing a
most probable explanation in bayesian networks.
Technical Report UIUCDS-R-2000-2150, U of Illi-
nois Urbana-Champaign, 2000.

[15] Judea Pearl. Probabalistic Reasoning In Intelli-
gent Systems. Morgan Kaufmann, 1998.

[16] Nevin Lianwen Zhang and David Poole. Ex-
ploiting causal independence in bayesian network
inference. Journal of Artificial Intelligence Re-
search, 5:301–328, 1996.

A Generating Random Networks

We generated several types of networks to perform our
experiments. We used two methods for generating the
structure, and a single parametric method for gener-
ating the quantification.

A.1 Generating the Network Structure

The first method is parameterized by the number of
variables N and the connectivity c. This method tends
to produce structures with widths that are close to c.
See [6] for an algorithmic description.

The second method is parameterized by the number
of variables N , and the probability p of an edge being
present. We generate an ordered list of N variables,
and add an edge between variables X and Y with prob-
ability p. The edges added are directed toward the
variable that appears later in the order.

For the experiment in Figure 2, we used method 1 with
N = 100 and c between 1 and 20.

For the experiments in Figures 5 and 6, we used
N = 100, c between 6 and 12, and p = .025. These
numbers were chosen so that the MAP width would be
small enough that we could compute the exact value
to measure the solution quality.

A.2 Quantifying the Dependencies

The quantification method is parameterized by a bias
parameter b. The values of the CPTs for the roots were
chosen uniformly. The values for the rest of the nodes
were based on a bias, where one of the values v was
chosen uniformly in [0, b), and the other as 1 − v. For
example, for b = .1, each non root variable given its
parents has one value in [0, .1), and the other in (.9, 1].
Special cases b = 0, and b = .5 produce determistic,
and uniformly random quantifications respectively.


